这个现象可以由如下定理解释:当在大量随机变量上重复很多次实验时,它们的分布总和将非常接近正态分布。
由于人的身高是一个随机变量,并且基于其他随机变量,例如一个人消耗的营养量,他们所处的环境,他们的遗传等等,这些变量的分布总和最终是非常接近正态的。
这就是中心极限定理。
本文的核心:
我们从上文的分析得出,正态分布是许多随机分布的总和。如果我们绘制正态分布密度函数,那么它的曲线将具有以下特征:
如上图所示,该钟形曲线有均值为 100,标准差为1:
均值是曲线的中心。这是曲线的最高点,因为大多数点都是均值。曲线两侧的点数相等。曲线的中心具有最多的点数。曲线下的总面积是变量所有取值的总概率。因此总曲线面积为 100%
约 68.2% 的点在 -1 到 1 个标准偏差范围内。约 95.5% 的点在 -2 到 2 个标准偏差范围内。约 99.7% 的点在 -3 至 3 个标准偏差范围内。
这使我们可以轻松估计变量的变化性,并给出相应置信水平,它的可能取值是多少。例如,在上面的灰色钟形曲线中,变量值在 99-101 之间的可能性为 68.2%。
版权申明:本内容来自于互联网,属第三方汇集推荐平台。本文的版权归原作者所有,文章言论不代表链门户的观点,链门户不承担任何法律责任。如有侵权请联系QQ:3341927519进行反馈。